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Abstract – The higher share of renewable energy 

sources (RES) in the electrical grid and the 

electrification of important sectors, such as 

transport and heating, are imposing a tremendous 

challenge to the operation of power system. In 

recent years, the use of machine learning (ML) 

models has been gaining increased attention from 

the power sector as they can provide accurate 

forecasts of the system behavior from energy 

generation to consumption, helping all the 

stakeholders to optimize their activities. The aim of 

this work is to develop a methodology to enhance 

the load demand and the wind speed forecasts 

generated by a ML model, namely a feed-forward 

neural network (FFNN), by incorporating a 

forecasting error correction step which involves the 

prediction of the initial errors by another FFNN. The 

results showed that the proposed methodology was 

able to significantly improve the load demand 

forecasts while any notable performance difference 

was verified for the wind speed forecasts. The 

forecasted wind speed was applied to a wind 

turbine power curve, which was modeled with the 

adoption of a clustering method, to estimate the 

wind power output. The results achieved using the 

proposed model forecasts were more accurate than 

the ones that used the benchmark model forecasts. 

Keywords – Feed-forward neural networks, 

Forecasting, Load demand, Machine Learning, 

Wind power, Wind speed. 

1 Introduction 

The raise of greenhouse gases (GHG) concentration in 

the atmosphere is most likely the main driver of the 

changes on the Earth’s climate. The energy sector 

accounts for a quarter of the world GHG emissions [1], 

being the one with the largest share. Therefore, it is not 

possible to discuss climate change without considering 

the energy sector. 

The ageing of conventional power plants, technological 

advances and cost reductions are allowing cleaner 

sources, mainly solar and wind-based systems, to boost 

its share in the electricity mix at the expense of fossil 

fuels [2]. Simultaneously, the electrification of significant 

sectors, such as transport and heating, are increasing 

the load demand while the system decentralization is 

altering the load patterns and the energy flow, as 

consumers are changing their roles to become 

prosumers, i.e., someone who both produces and 

consumes energy [2]. These changes are imposing a 

great challenge to the sector and require several 

adaptation measures which involves technical, 

economic and political issues [3] that must be applied to 

ensure a reliable, affordable and safe electricity.  

The uncertain availability of natural resources and, 

consequently, of energy supply can cause grid 

instability issues, such as overvoltage and frequency 

deviations. To overcome this situation, the system must 

be flexible and resilient enough in order to cope with 

rapid generation and load changes and balance them at 

every moment. One way to ensure more 

trustworthiness and better manage of the system is by 

anticipating its behavior. When accurate forecasts are 

made, the decisions regarding the power system 

operation, maintenance and planning become more 

efficient [4, 5]. 

The technological developments in computing and the 

ever-growing data availability from the system 

operators, supervisory, control and data acquisition 

(SCADA) systems and weather forecasts allow the 

creation of sophisticated and efficient computational 

methods that can be applied in the energy sector. More 

specifically, ML models have shown great capability to 

generate accurate predictions of the system behavior 

from energy generation to consumption and can benefit 

all stakeholders to optimize their activities. 

The main goal of this work is to investigate and propose 

a ML method to generate forecasts of electrical load 

demand and wind speed in different time scales by 

incorporating an error correction step on the initial 

models results. Also, the wind power output was 

estimated by using the wind speed forecasts and a wind 

power curve clustering and adjustment method. 
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This paper is divided in 7 sections. After this section, in 

Section 2, an overview of ML models and their 

application for electrical load, wind speed and power 

forecasting are introduced. Sections 3 and 4 present the 

databases and methodology for the electrical load and 

wind speed and power forecasts, respectively. In 

Sections 5 and 6, the results obtained with the load 

demand and the wind speed and power models are 

discussed respectively. Finally, in Section 7, the major 

findings of this research are summarized and 

suggestions for future works are proposed. 

2 Background 

2.1 Machine Learning 

ML refers to computer algorithms that are able to learn 

from data and previous experiences without being 

explicitly programmed to do so [6]. ML is a subset of 

artificial intelligence, which concerns the ability that a 

computer has to perform tasks that are associated with 

and normally require human intelligence [7]. With data 

being collected at such a fast rate and large amount, it 

became extremely hard for a human or simpler 

statistical models to handle all the data. On the other 

hand, these systems can process the data in a much 

quicker pace and help to improve the decision-making 

process. 

Tasks that are usually associated with ML models are: 

image and speech recognition, medical diagnosis, 

products recommendations, spam filtering and traffic 

prediction. Depending on the task and on the available 

data, ML problems can be classified as: supervised 

learning, unsupervised learning and reinforcement 

learning [8].  

In supervised learning problems, the available data 

comprises features that are associated with labeled 

data. The name supervised learning actually comes 

from the fact that every input has a target value to learn 

from [7]. Normally, they are used for classification tasks, 

where the model labels the inputs (discrete output); and 

regression tasks, where the program returns a 

numerical value given some input (continuous output). 

Examples of classification and regression problems are, 

respectively, spam filtering and energy price prediction. 

In unsupervised learning problems, the available data is 

not labeled, and the system tries to identify useful 

properties and patterns on the data by itself. Commonly, 

they are used to learn a probability distribution function 

on the dataset. The learned pattern can then be used to 

denoise or divide the data into groups of similar 

examples (clustering). One typical application of these 

methods is to identify credit card frauds [7]. 

Finally, the reinforcement learning models does not use 

solely the provided data and also interact with the 

environment by means of a feedback loop that evaluate 

its output [9]. Based on the evaluation of previous 

experiences, it must learn by itself the best strategy to 

avoid bad feedbacks and maximize good ones. 

Examples of reinforcement learning are inventory 

management and traffic signal control. 

Since the object of this research is a supervised 

learning problem and, more specifically, a regression 

task to predict electrical loads, wind speed and power, 

the next sections present recent studies within these 

fields. 

2.2 Electrical Load Forecasting 

The increased need for electricity, the change of power 

generation mix and load pattern are some of the already 

observed transformations. With all this, the electricity 

grid behavior becomes more unpredictable and its 

operation and control more complex which can lead to 

greater supply instability. Therefore, techniques and 

methods capable of increasing system reliability are 

extremely important. 

One way to ensure more trustworthiness and better 

manage the system is by anticipating the load demand. 

When accurate forecasts are made, the decisions 

regarding the power system operation, maintenance 

and planning become more efficient [4, 5]. Furthermore, 

improvements on energy policies and tariffs can be 

achieved. In recent years, much of the research have 

been focused on the development of models to forecast 

the electrical load in different time horizons. These 

periods are often classified as short-term, which goes 

up to 1 week ahead; medium-term, from weeks to 1 

year; and long-term, for future years [10]. Also, each of 

these timeframes have different applications, with the 

first being more important for daily operation and cost 

minimization [11] and the others for fuel reserves 

estimation, maintenance and capacity expansion 

planning [12].  

Several approaches have been employed recently to 

make these forecasts. These approaches can be 

separated into three categories: statistical based, 

computational intelligence based and hybrid 

approaches [13]. Statistical models usually embrace uni 

or multivariate time-series models and regression 

techniques, such as Autoregressive Integrated Moving 
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Average (ARIMA) and linear regression, while 

computational intelligence models are mainly related to 

ML approaches. Commonly, statistical based methods 

are less memory intensive due to its simplicity and, thus, 

faster to execute. On the other hand, ML models are 

capable of identifying nonlinear relationships between 

inputs and outputs and can be extremely time 

consuming. However, this level of complexity can be 

necessary to achieve better results [10]. Finally, hybrid 

models combine features from statistical and 

computational intelligence models. They generally use 

the former to preprocess and/or select the input data 

that will be fed to the latter. 

These forecasting models can be implemented using a 

large range of inputs that can be divided into four major 

categories: socio-economic, such as the region average 

income and GDP; environmental, such as mean 

temperature; building and occupancy, which is related 

to building sizes and dwelling types; and time index, that 

is related to the date stamps used as inputs [14]. Also, 

electricity demand historical data is generally taken into 

consideration. However, the choice of these inputs will 

depend on the time scale and type of the region of the 

study. Usually, historical, environmental and time index 

data are more common for short-term forecasts in a 

region scale [14]. 

2.3 Wind Speed and Power Forecasting 

Over the last decades, power production from RES 

have experienced a sharp expansion. With growing 

concerns about the global climate crisis, the expectation 

is that this trend will continue to escalate. Amid those 

sources, wind energy arises as one of the most 

attractive due to its high generation capacity, efficiency 

and cost-benefit ratio [15]. However, as others RES, 

wind power generation also suffers from resource 

stochasticity and intermittency which impose a 

challenge to its large-scale penetration as it can 

undermine the whole electrical system operation [17]. 

To surpass these issues, accurate wind energy 

forecasts can play an essential role. They can, for 

example, help to optimize the market prices, producer 

profits [17] and electricity supply reliability [18]. Several 

factors, such as the environmental conditions, weather 

and time of the day can affect the predictions [20]. 

Nonetheless, the volatile characteristics of the wind 

hamper forecasts models to be precise [20]. Hence, 
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minimizing the uncertainty associated with the wind is a 

keystone to improve wind energy forecasts [19]. 

As for electrical load forecasts, the wind speed and 

power forecasting models can be classified according 

to the time horizons: very short-term, for forecasts up to 

30 minutes ahead; short-term, which goes from 30 

minutes to 6 hours ahead; medium-term, from 6 hours 

to 1 day ahead; long-term, from 1 day to 3 days ahead; 

and very long-term, from 3 days to longer forecasts 

[18,21,22]. The application of these forecasts goes from 

real-time market and grid operation for shorter periods 

and unit commitment decisions, maintenance planning 

and reserve requirements for longer horizons. 

With regard to the methodology, the models can be 

divided into physical, statistical, ML and hybrid models. 

Physical models work with complex mathematical 

equations that relate the terrain, atmosphere and 

external conditions to generate weather forecasts [18]. 

They are also known as NWP models and can make 

forecasts for different time horizons, height levels and 

parameters. However, they tend to be extremely time 

consuming due to the high level of complexity [21]. On 

the other hand, statistical models are much simpler and 

can run faster. They usually have good results for the 

short-term but their performance quickly worsens for 

longer terms [18]. As mentioned in Section 2.2, ML 

models can identify nonlinear relationships between 

inputs and targets by working with algorithms that 

enable them to learn from data. They usually are not as 

time consuming as physical models and have better 

results than statistical methods. Finally, hybrid models 

can combine some techniques to make forecasts. 

3 Electrical Load Forecasting Models 

3.1 Database 

The database for the electrical load forecasts consisted 

of historical data collected from Enedis1, which is the 

major distribution system operator in France. This data 

is freely available, and it is published in a consolidated 

form, so that the information from producers and 

consumers is kept anonymous. The collected data 

refers to the measured load demand in an industrial 

area connected to the medium voltage grid (for 

subscribed power up to 36kVA) and was sampled at 

every 10-minutes. Furthermore, it came in a .csv format, 

which could be directly used by the Python scripts that 
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were developed later. The retrieved period ranges from 

01-10-2016 to 31-03-2017 in a total of 26208 samples. 

3.2 Methodology 

3.2.1 Feed-Forward Neural Networks 

The considered FFNN is composed of nodes (or 

neurons) that are distributed across different layers, 

namely input, hidden and output layers. Each node in a 

layer is linked to the ones in the next by means of a 

weight parameter that measures the strength of that 

connection, forming a fully connected network structure 

that reminds the nervous system. The operating 

principle of neural networks can be described as a 

sequence of functional transformations [8]. For a given 

layer 𝑙 ∈ {1, … , 𝐿}, where L is the number of layers, a 

quantity called the activation value of the next layer 

𝐴[𝑙] = (𝑎1
[𝑙]
, … , 𝑎𝑗

[𝑙]
) can be calculated as a linear 

combination of inputs 𝑋[𝑙−1] = (𝑥1
[𝑙−1]

, … , 𝑥𝑖
[𝑙−1]

)
𝑇

 and 

weights 𝑊[𝑙] in the form 
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and 𝑏[𝑙] = (𝑏1
[𝑙]
, … , 𝑏𝐷

[𝑙]
)
𝑇

 is a parameter called bias, 

which is used to adjust the output. The subscripts 𝑖 and 

𝑗 represents the number of nodes or dimension of layers 

𝑙 − 1 and 𝑙, respectively. 

The activation value 𝐴[𝑙] is transformed by a nonlinear, 

differentiable function ℎ[𝑙] that is named activation 

function as in equation (3.3), resulting in the next layer 

input vector 𝑋[𝑙]. For hidden layers, the activation 

function is a logistic sigmoid or hyperbolic tangent 

function, while for the output layer it is the identity 

function. 

 𝑋[𝑙] = ℎ[𝑙](𝐴[𝑙]) (3.3) 

Equations (3.1) and (3.3) present recursive calculations 

that constitutes a process known as forward 

propagation [8]. This name comes from the fact that the 

information is flowing forward through the network, and 

this is the reason why this type of model is called FFNN.  

The parameters optimization is done with gradient 

descent-based calculations. With this approach, the 

required partial derivatives are related to the two 

parameters of a FFNN model: the weights and biases. 

Appling equation (3.4) to the last layer of this model 

results in (3.6) and (3.7). 

 𝑝[𝑖+1] = 𝑝[𝑖] − 𝜂 ▽ 𝐸(𝑝) (3.4) 

where p represents the model parameters, 𝜂 is the 

learning rate, and E(p) is the loss function (3.5), which 

is the Mean Squared Error (MSE). In this equation, 𝑥𝑖 is 

the forecasted value, 𝑡𝑖 is the target value and 𝑛 is the 

number of points in the dataset. The search for the loss 

function minimum is commonly done by computing its 

gradient (▽ 𝐸(𝑝)), which is the vector containing the 

partial derivatives of 𝐸(𝑝) [7]. The partial derivative  
∂

∂𝑝
𝐸(𝑝) indicates how the function changes with a small 

change in one of the parameters. Therefore, the 

gradient vector points to the direction of the steepest 

increase of the function. As the learning algorithm goal 

is to minimize the error, with this approach the 

parameters can be updated at each iteration 𝑖 by going 

in the opposite direction. 

 
𝐸(𝑝) = MSE =

1

𝑛
∑(𝑓(𝑥𝑖 , 𝑝) − 𝑡𝑖)

2

𝑛

𝑖=1

 (3.5) 

 
𝑊[𝑖+1]
[𝐿] = 𝑊[𝑖]

[𝐿] − η
∂𝐸

∂𝑊 [𝐿]
 (3.6) 

 
𝑏[𝑖+1]
[𝐿] = 𝑏[𝑖]

[𝐿] − η
∂𝐸

∂𝑏[𝐿]
 (3.7) 

By computing the partial derivatives in (3.6) and (3.7), 

one can notice that the algorithm goes through each 

layer in reverse, measuring the error contribution from 

each connection and updating the parameters 

accordingly [9], in a process known as 

backpropagation. This algorithm is usually more 

computationally efficient than other numerical methods 

such as finite differences [8] as it avoids unnecessary 

calculations by reusing some of the partial derivatives 

from previous layers.  

3.2.2 Load Forecast 

Preliminary tests using different ML models such as 

SVM, RF and FFNN demonstrated a better forecast 

performance of the latter. Thus, only FFNNs were 

further investigated in this work. The models were 

created with Python’s TensorFlow library, together with 

scikit-learn, numpy and others for three different 

forecast horizons: 10-minutes ahead, 1-hour ahead and 

12-hours ahead. For each horizon, six different inputs 

combinations were tested. These inputs included 

previous load measurements, which were chosen 

based on a preliminary analysis, and time indexes. At 
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each timestep, the targets of the model were the 

measured electrical load. 

In a first moment, 20% of the data was separated 

(≈5000 samples) to be tested by the initial electrical load 

forecasting model while the other 80% was used as the 

training set. In order to have more reliable results, the 

models were trained with 3-fold cross validation. Later, 

the training data was scaled to be between 0 and 1. 

Data scaling is a common pre-processing technique 

which can improve the model learning process. After the 

training, the models were ranked based on the average 

of the validation set Root Mean Squared Error (RMSE) 

over the 3 folds. Also, the Mean Average Error (MAE) 

was another metric used to evaluate the performances. 

To find the best parameters set for the FFNN, a grid 

search was performed. The searched parameters were 

the number of nodes in the hidden layer, the activation 

function and the learning rate, in a total of 48 models for 

each forecast horizon. Also, the chosen optimizer was 

the Adam algorithm [23]. Finally, the configuration with 

the best results were compared with the persistence 

model in the 10-minutes ahead horizon and to a linear 

regression in the 1-hour and 12-hour horizons. 

3.2.3 Error Forecast 

A model to predict the errors of the initial load forecast 

model was developed for the three horizons. The data 

used in this step was provided by the errors observed 

on the test set, computed as the difference between the 

initial model forecasts and the actual values. After 

analyzing the errors and based on the error forecasting 

methodology proposed in [24], three different input 

configurations using previous errors were created. At 

each timestep, the targets of the model were the 

corresponding initial model error. The data preparation 

and the model training were conducted as described in 

the previous section, with a slight change on some 

parameters. A total of 24 models were evaluated for 

each horizon. Finally, the errors predicted by the best 

model were combined with the initial forecasts to 

achieve an adjusted electrical load estimation. 

4 Wind Speed and Power Forecasting 

4.1 Database 

The database for the wind speed and power forecasts 

consisted of NWP data from the European Centre for 

Medium-Range Weather Forecasts (ECMWF2) and 
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historical data from the SCADA system of three wind 

turbines in a wind farm in the south of South America. 

The retrieved NWP data referred to 24 forecast hourly 

steps (steps 1 to 24) from 31-12-2018 at 12:00h UTC to 

12-12-2020 at 12:00h UTC. The collected parameters 

were the U and V components of the wind, which are 

the components parallel to the 𝑥 and 𝑦 axis respectively, 

at the wind farm location and at pressure level 133 

(equivalent to a geopotential and geometric altitude of 

106.54m), as this height was the closest to the turbines’ 

hub height. In addition to that, SCADA data sampled 

every 10-minutes from three turbines was collected. For 

two of them (Turbines A and B), the period ranged from 

01-01-2019 to 10-12-2020 while for the other (Turbine 

C) the last date was 30-04-2019, totalizing 17040 and 

2880 samples, respectively. To match the NWP sample 

rate, this data was resampled to a 1-hour basis. 

Furthermore, the available parameters were production 

status information, average wind speed and power. 

4.2 Methodology 

4.2.1 Wind Speed Forecast 

The wind speed forecasts were made for two different 

horizons: 12 and 24-hour ahead. In every case, the 

inputs were the forecasted wind speeds by the NWP 

model and the output (target) was the SCADA wind 

speed average. For the 12-hour horizon, three different 

inputs combinations were tested, while for 24-hour 

horizon, only the configuration with the best result in the 

first case was appraised. The inputs were chosen based 

on a preliminary analysis of the data. 

The data preparation and the model training were 

conducted similarly to the electrical load case. 

However, a 5-fold cross validation was used here 

instead of 3-fold and the activation function was the 

same in every case (rectified linear unit). Furthermore, 

the grid search was carried only for Turbine A, in a total 

of 48 models for 12-hour horizon and 16 for the 24-hour. 

For the other turbines, only the top-3 models in every 

forecast horizon for Turbine A were retrained and 

evaluated. The results were compared with the ones of 

the NWP model and of an adjusted version of the NWP 

model (ANWP), which was created by adding the 

average error of the NWP model over the training set on 

the test set. The error metrics used for the wind speed 

forecasts were the RMSE, the MAE and the R2 

coefficient. 
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4.2.2 Error Forecast 

The error forecast for the wind speed model was 

performed only for Turbine A in the 12-hour horizon, as 

the initial models were proposed for this condition. The 

data for the error forecast model was obtained from the 

test set of the wind speed correction model by 

calculating the difference between the measured wind 

speed and the forecasts made by this model. 

To predict the errors of the initial wind speed forecasting 

model, an approach similar to the one described in 

Section 3.2.3 was used. In this case, only one 

configuration was tested: for every 12 timesteps (12 

hours), an input vector consisting of the previous 12 

observed errors and the following 12 forecasts and an 

output with the next 12 errors (target vector), in a 

multioutput neural network approach. A total of 18 

models were analyzed. 

4.2.3 Wind Power Curve Modeling 

Similarly to the error forecast, the wind power curve was 

obtained only for Turbine A but, here, only the SCADA 

data for 2019 was considered. A typical wind power 

curve can be divided into four different operating 

regions, as illustrated in Figure 1. The power curve 

modeling performed in this work refers to the region II, 

in which the wind speed is between the cut-in and rated 

speed of the turbine and its relationship with the output 

power is non-linear. 

 
Figure 1: Typical Wind Power Curve 

Using the SCADA measurements, samples outside 

region II and with any abnormal measurement, such as 

turbine brake active, misalignment between turbine yaw 

and wind speed or active event/alarm code, were 

removed from the dataset. However, after removing 

these points, it was verified that several non-

representative samples were still in the dataset. Hence, 

another approach to filter those points was needed. 

The chosen solution was the Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN), which 

is a clustering algorithm that aims to separate high 

density from low density areas of the dataset [25]. The 

working principle of this method is based on grouping 

together points that are sufficiently close to each other 

(neighbors’ samples). To do that, two parameters must 

be controlled: a distance measurement, which can 

come from any distance function, and a minimum 

number of samples to constitute a cluster [26]. 

After applying the DBSCAN algorithm and removing the 

outliers from the dataset, it was possible to obtain the 

wind power curve. To do that, different polynomial 

curves were fitted by changing the degree from 3 to 7 

and the best one chosen based on a visual analysis. 

Equation 4.1 presents the formulation for these curves, 

where 𝑎 represents the coefficients and 𝑛 indicates the 

degree of the polynomial. Finally, with the polynomial fit 

for region II and, considering the expected power output 

for regions I, III and IV, the wind power curve was 

defined. 

 
y =∑ai

n

i=0

xi (4.1) 

4.2.4 Wind Power Forecast 

After computing the wind speed with the methodology 

described in Subsections 4.2.1 and 4.2.2 and obtaining 

the wind power curve as detailed in Subsection 4.2.3, 

the output power was calculated by using the estimated 

wind speed with the power equations. Finally, the 

results were compared to the ones observed using the 

original NWP forecasts and the SCADA wind speed with 

the proposed power curve. 

5 Electrical Load Forecasting Results 

As mentioned in Section 3, the electrical load forecasts 

were made for the three time horizons. However, due to 

space limits, only the results for the 1-hour ahead 

horizon are presented in detail. 

5.1 Initial Results 

The best model configuration for the initial load 

forecasts had the previous 3 periods, 3 days at the time 

of the forecast and the time index corresponding to the 

forecasted hour decomposed into sine and cosine 

components as inputs, in a total of 8 inputs. Also, it had 

48 nodes in the hidden layer and the hyperbolic tangent 

as activation function. 
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In Table 1, the results obtained with this configuration 

and three different learning rates are presented with the 

metrics for the baseline model (linear regression). One 

can notice that the model B2.8a performed better than 

the other proposed models and, therefore, it was 

chosen to be evaluated using the test set. The results 

suggest that the higher learning rate enabled the model 

to be closer to a loss curve minimum at the end of the 

training. Furthermore, the proposed model achieved 

superior performance than the linear regression model 

in the order of 10.7% over the RMSE and of 11.3% over 

the MAE. 

5.2 Error Forecast 

The best model configuration for the error forecasts had 

the errors of the previous 4 periods and 4 days at the 

time of the forecasts as inputs. Also, it had 12 nodes in 

the hidden layer and the rectified linear unit as activation 

function. In Figure 2, the error forecasts made by the 

proposed model are shown. One can notice that the 

predictions were very accurate in general despite the 

spikes’ underestimation. 

Table 1: Results of the 1-hour ahead initial and baseline electrical 

load forecasting models 

Model LR 
RMSE (kW) MAE (kW) 

Val. Test Val. Test 

B2.8a 0.01 339.43 376.25 261.33 303.76 

B2.8b 0.005 357.58 - 276.05 - 

B2.8c 0.001 1037.6 - 736.56 - 

Bas. - - 421.48 - 342.3 

 
Figure 2: 1-hour ahead electrical load error forecasts 

5.3 Adjusted Results 

As described in Section 3, the adjusted results were 

obtained by combining the initial forecasts with the 

errors predictions. In Table 2, a comparison between 

the results obtained with the initial, adjusted and 

baseline forecast models for the 1-hour ahead scenario 

can be seen. Originally, the initial model had a 

performance only slightly superior to the one of the 

linear regression model (see Table 1). With the 

proposed methodology, the initial results were improved 

by 32.1% on the RMSE and 36.2% on the MAE. In 

Figure 3, it is possible to notice that the model correctly 

adjusted the initial forecasts between timesteps 0 and 

50 and close to timestep 150, while it did not change the 

accurate predictions of some load spikes. 

Table 2: Results of the 1-hour ahead electrical load forecasts 

Model RMSE (kW) MAE (kW) 

Initial 352.95 295.43 

Adjusted 239.34 188.49 

Baseline 371.58 307.11 

 

 
Figure 3: 1-hour ahead electrical load forecasts 

6 Wind Speed and Power Forecasting Results 

As mentioned in Section 4, the wind speed forecasts 

were made for three turbines in two time horizons. 

However, due to space limits, only the results for 

Turbine A in the 12-hour ahead horizon are shown here. 

6.1 Initial Results 

The best model for Turbine A in the 12-hour ahead 

horizon had 15 nodes in the hidden layer and a learning 

rate of 0.001. However, it was noticed that all the 

models had similar performances regarding the error 

metrics. This is possibly explained by the use of the 

original NWP wind speed forecast at time 𝑡 as an input 

in every model. This input had the highest correlation 

with the target (wind speed measured in SCADA). Also, 

using other timesteps close to 𝑡 seemed to have added 

a little more information to the models while further 

timesteps did not. 

In Table 3, the results obtained with the best proposed 

model and the baseline models is shown. One can 

notice that the proposed model had significant better 

results. The improvements over the initial NWP forecast 
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were about 23.3% on the RMSE, 24.8% on the MAE 

and 41.3% on the R2, while for the ANWP they were 

10.7%, 10.5% and 11.7%. This result suggests that the 

errors in the NWP model is not only caused by some 

bias and/or the difference between the model height 

and the turbine hub height. The use of an ANN was able 

to find and correct other error patterns and is, thus, a 

reasonable and efficient choice to enhance NWP wind 

speed forecasts. 

6.2 Error Forecast 

Differently than the results achieved with the electrical 

load error forecasting models, in this case, the proposed 

model was not able to find any pattern in the data (see 

Figure 4). One of the possible reasons is related to the 

chosen input parameters. For the load forecast case, 

the preliminary analysis showed a significant correlation 

between previous observations and the target values 

while, here, this relationship was not observed. Thus, it 

is reasonable to conclude that more features would be 

necessary to improve the error forecasts with this 

approach. Also, due to the stochastic nature of the wind, 

it is possible that the error pattern is random and, 

therefore, much harder to predict. 

Table 3: Results of the 12-hour ahead initial and baseline wind 

speed forecasting models 

Model RMSE (m/s) MAE (m/s) R2 

PB10.12.TA 1.290 0.986 0.705 

ANWP 1.444 1.102 0.631 

NWP 1.685 1.312 0.499 

 
Figure 4: Turbine A 12-hour ahead wind speed error forecasts 

6.3 Adjusted Results 

In Table 4, the metrics for both initial and adjusted 

models are presented. One can notice that the 

proposed wind speed error forecast model was not able 

to improve the results as it was observed for the 

electrical load scenario. On the contrary, a slight 

performance decline was observed. This outcome was 

somehow expected after the findings in the previous 

section, which showed the poor performance of the 

proposed model to forecast the errors. However, it is 

worth mentioning that the two proposed models had 

better results than the NWP model. Finally, in Figure 5, 

the forecasts of the initial and NWP models are shown. 

Table 4: Results of the 12-hour ahead wind speed forecasts 

Model RMSE (m/s) MAE (m/s) 

Initial 1.386 1.050 

Adjusted 1.393 1.058 

NWP 1.655 1.268 

 
Figure 5: 12-hour ahead wind speed forecasts 

6.4 Power Curve Modeling 

As explained in Section 4, after removing 

measurements that did not follow regular operating 

conditions, several samples in the operating region II 

still behave differently from what it was expected and, 

to filter those points, the DBSCAN clustering algorithm 

was used. The results obtained with this method can be 

seen in Figure 6. The proposed approach was able to 

correctly classify the samples more distant to the 

turbine’s expected behavior as outliers. Those points 

were removed from the dataset and not used to adjust 

the wind power curve. 

 
Figure 6: DBSCAN clusters for Turbine A 

With the remaining samples, a 4th degree polynomial 

was fitted for region II. Finally, with this polynomial, and 
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considering an output power of zero for regions I and IV 

and the nominal power in region III, the wind power 

curve for this turbine was defined. 

6.5 Power Estimation 

The adjusted wind power curve was used to estimate 

the wind power production using the wind speeds 

measured with the SCADA and the ones of the 

proposed initial model and the NWP. The first was 

chosen so that the best possible result with the available 

data could be analyzed, as the error corresponding to 

this estimate is probably related to noise and sampling 

of the data. The choice for the initial model wind speed 

is due to its better results when compared to the 

adjusted model, which was not able to improve the initial 

results. Finally, the NWP wind speed was used to 

generate the power forecasts of the baseline scenario. 

The results of the wind power forecast can be seen in 

Table 5. One can notice that the power estimates made 

with proposed model wind speed presented an 

improvement of 26.5% and 24.5% over the RMSE and 

MAE of the ones obtained using the NWP wind speed, 

moving closer to the results found using the SCADA 

wind speed. These findings validate the proposed 

methodology and show that having more accurate wind 

speed forecasts is crucial to improve the power 

predictions. 

Table 5: Results of the wind power forecasts for Turbine A 

Input RMSE (kW) MAE (kW) 

SCADA Wind Speed 73.40 214.45 

Proposed Model 

Wind Speed 
266.86 385.56 

NWP Wind Speed 363.18 510.90 

In order to illustrate the achieved results, Figure 7 

shows the true wind power output and the forecasts 

made with both the proposed model and NWP wind 

speeds. First, it is noticeable the better performance of 

the proposed model when compared to the baseline 

during most of the time. The main exception can be 

seen during nominal power production (from timestep 0 

to 30 approximately). At those timesteps, the NWP 

seemed to perform better. A probable explanation to 

this is that the proposed model primarily adjusts the 

average wind speed and, therefore, the higher wind 

speeds turn out to be reduced and the power output do 

not correspond to the nominal power. However, in 

general, the proposed model tends to be more accurate 

and generates better estimates. 

 
Figure 7: Wind Power forecasts for Turbine A 

7 Conclusions 

In this work, a FFNN to forecast electrical load demand, 

wind speed and power in different time scales by 

incorporating an error correction step following the initial 

models results was proposed. 

With regard to the electrical load demand forecasts, 

several models were created to make predictions in 

three time horizons: 10-minutes, 1-hour and 12-hours 

ahead. However, due to space limits, only the results for 

the 1-hour ahead were presented here. The results 

demonstrated that the proposed initial model already 

outperformed the linear regression model (baseline). 

This difference was strengthened by the incorporation 

of the proposed error correction step, which resulted in 

a more accurate model. 

For the wind speed forecasts, models for three turbines 

in a wind farm were created to predict two time horizons: 

12-hours and 24-hours ahead. Also due to space limits, 

only the results for one of the turbines (Turbine A) in the 

12-hour horizon were presented here. The results 

showed that the proposed initial model was able to 

slightly outperform the benchmark models, namely the 

NWP and an adjusted NWP. The findings suggest that 

the proposed model was able to find and correct error 

patterns other than the one caused by the difference 

between the NWP model height and the turbine hub 

height. However, in this case, the incorporation of the 

error correction step was not able to enhance the initial 

forecasts. 

In addition to that, the DBSCAN clustering algorithm 

was used to identify samples that apparently did not 

have the expected wind speed and power relationship. 

The performance of this method was satisfactory and, 

after the removal of these samples, the wind power 

curve was approximated with a polynomial. With the 

adjusted curve and the wind speed estimated by the 

proposed model, wind power forecasts were made. The 
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results accomplished with the proposed wind speed 

model were superior than those of the original NWP. 

The findings of this research suggest that the proposed 

methodology can be beneficial for the energy sector, as 

it provided enhanced forecasts with ML models that 

work with limited amount of data. When data is scarce, 

it is essential to extract as much information as possible 

from it. The analysis of the errors showed that 

sometimes there is more information in the data than 

the models are able to find and that including an error 

correction step can improve the forecasts. 
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